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Abstract: Mapping yellow fever (YF) risk is often based on place of infection of human cases, whereas the

circulation between nonhuman primates (NHP) and vectors is neglected. In 2008/2009, YF devastated NHP at

the southern limit of the disease in the Americas. In view of the recent expansion of YF in Brazil, we modeled

the environmental suitability for YF with data from 2008/2009 epizootic, the distribution of NHP (Alouatta

spp.), and the mosquito (Haemagogus leucocelaenus) using the maximum entropy algorithm (Maxent) to

define risk areas for YF and their main environmental predictors. We evaluated points of occurrence of YF

based on dates of confirmed deaths of NHP in three periods, from October 2008 to: December 2008, March

2009, and June 2009. Variables with greatest influence on suitability for YF were seasonality in water vapor

pressure (36%), distribution of NHP (32%), maximum wind speed (11%), annual mean rainfall (7%), and

maximum temperature in the warmest month (5%). Models of early periods of the epizootic identified

suitability for YF in localities that recorded NHP deaths only months later, demonstrating usefulness of the

approach for predicting the disease spread. Our data supported influence of rainfall, air humidity, and ambient

temperature on the distribution of epizootics. Wind was highlighted as a predicting variable, probably due to

its influence on the dispersal of vectors infected with YF in fragmented landscapes. Further studies on the role

of wind are necessary to improve our understanding of the occurrence of YF and other arboviruses and their

dispersal in the landscape.
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INTRODUCTION

Yellow fever (YF) is a viral disease caused by a flavivirus of

the Flaviviridae family (Monath and Vasconcelos 2015).

Endemic to the tropical regions of Africa and South

America, the disease presents periodic expansions and
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retractions of its area of occurrence (Jentes et al. 2011). In

the Americas, the virus is maintained in the wild in cycles

involving nonhuman primates (NHP) and hematophagous

mosquitoes (mainly Haemagogus and Sabethes) and has a

relatively narrow range of hosts capable of productive

infection (Monath and Vasconcelos 2015). Given its recent

introduction (ca. 400 years ago) in the Americas via the

slave trade (Bryant et al. 2007), the virus is deadlier to

neotropical NHP than to the original hosts in Africa with

whom it shares a longer period of coevolution (Hanley

et al. 2013). In addition to acquiring the virus through

blood feeding on infecting vertebrates, the vectors can also

become infected by transovarial transmission, an important

mechanism of virus maintenance (Reiter 2001; Carrington

and Auguste 2013). In a jungle cycle, humans are sporad-

ically infected by mosquito bites, which typically occur in

forested areas (Monath and Vasconcelos 2015). In the ur-

ban cycle, humans are the only source of the virus, and

human–human transmission occurs via the vector Aedes

aegypti in or near dwellings (Monath and Vasconcelos

2015).

The clinical manifestation of YF in humans varies

greatly, resulting in disease in only a low proportion of

infected individuals. Severe cases characterized by jaundice,

hemorrhage, and death are good indicators of an outbreak,

but represent only approximately 12% (95% CI 5–26%) of

the total infected population (Johansson et al. 2014). A

vaccine available for 80 years has not prevented major

epidemics in areas with long periods without the disease

(without natural immunity) or without adequate vaccine

coverage (Monath and Vasconcelos 2015).

Although human populations with low vaccine cov-

erage are a key factor in the occurrence of outbreaks, the

multifactorial causes of virus dispersal are unclear due to

the scarcity of longitudinal field studies (Monath and

Vasconcelos 2015). These causes involve complex interac-

tions between deterministic (density and vector compe-

tence, virus virulence) and stochastic (environmental

impacts, movement of human populations) factors

(Monath and Vasconcelos 2015). Spatial expansions of the

circulation of YF can be associated with the occurrence of a

new strain of the virus (Souza et al. 2010; Bonaldo et al.

2017), but information is lacking on how biological chan-

ges derived from genetic alterations influence such expan-

sions to confirm causality (Monath and Vasconcelos 2015).

Prolonged rainfall and high temperatures have been asso-

ciated with YF outbreaks in Africa and South America

(Monath and Vasconcelos 2015). In fact, the risk of

occurrence of YF in a region relates to human presence,

mosquito vectors, and vertebrate hosts under the influence

of the climate and the biotic environment (Briand et al.

2009).

Among the climatic factors that affect the occurrence

of YF, rainfall is generally considered the most important.

Rainfall plays a central role in the multiplication and

density of vectors, since breeding sites are scarce during dry

periods (Reiter 2001). Given the accumulation of eggs

during these periods, heavy rains after long droughts favor

the emergence of a generation of mosquitoes infected by

transovarial transmission (Reiter 2001; Carrington and

Auguste 2013). On the other hand, temperature increases

decrease the time elapsed between the ingestion of blood

infected with the virus and the possibility of the mosquito

transmitting it by biting (Shope 1991).

In addition to the influence on vectors, biotic and

abiotic environmental factors also affect the NHP in their

geographical distribution, group composition, territorial

boundaries, horizontal and vertical movements in the ca-

nopy, life span, birth rate, activity period, sleeping sites,

and other characteristics that affect the maintenance of the

YF cycle in a region (Rodhain 1991). Some variations in

these characteristics include the hosts’ dispersal ability in

continuous or fragmented landscapes; daytime behavior

that coincides with the activity of the vector; and the

arboreal stratum occupied by NHP, which facilitates the

encounter with mosquitoes that inhabit the tree canopy,

among others. An association of these factors determines

the nature and frequency of contact between NHP and

mosquitoes, the way the virus circulates, and how it is

maintained between epizootics (Rodhain 1991).

A better understanding of the ecoepidemiological fac-

tors that determine the mode of transmission and influence

the geographical distribution of YF is essential to define the

sites and times with greater risk of transmission (Dégallier

et al. 1992), thus allowing to trigger surveillance actions

that include preventive immunization in unvaccinated

human populations (Romano et al. 2014). This definition

has been a constant challenge in risk analysis for the

establishment of vaccination strategies (Hill 2012). The first

risk analyses for YF considered only the detection of human

cases. With the advent of more specific diagnostic tech-

niques, the analyses have evolved to an approach that seeks

evidence of the virus in vectors and NHP (Hill 2012)

integrated with advanced geoprocessing tools (Hamrick

et al. 2017), mapping of YF (and other arboviruses) risk of

transmission by Ae. aegypti and Ae. albopictus (Kraemer
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et al. 2015; Leta et al. 2018), worldwide modeling of YF risk

based on 1155 human cases from 1970 to 2016 and envi-

ronmental and biological covariates and vaccination cov-

erage (Shearer et al. 2018) and seasonal influence of climate

and environment on the transmission of YF in Africa

(Hamlet et al. 2018). In Brazil, the state of São Paulo

illustrates one of the rare attempts to define risk areas based

on the evaluation of environmental variables and the

analysis of multiple corresponding factors (Moreno and

Barata 2012). In 2018, the spatiotemporal spillover risk of

yellow fever in Brazil, from demographic and environ-

mental covariates using a monthly aggregation by munic-

ipality, was modeled (Kaul et al. 2018).

In this sense, species distribution models (SDMs) are

useful tools because they evaluate the relationship between

the occurrence of a species and a set of spatially explicit

environmental variables to estimate its niche, which can be

projected in geographical space (Franklin 2009). In an

epidemiological context, SDMs allow mapping the risk

areas to a disease, that is, a geographical projection of the

ecological distribution of the pathogen (Peterson 2008).

Consequently, SDMs serve to define areas of interest for

risk monitoring and management, to simulate scenarios

resulting from control actions, to predict outcomes of these

actions under different environmental conditions (e.g.,

climate change-related temporal forecasting) and to iden-

tify new areas under risk of disease occurrence (spatial

prediction) (Stevens and Pfeiffer 2011).

Examples of the use of SDMs in epidemiology include

(1) the analysis of the effect of environmental variables and

the occurrence of potential bat reservoirs of the Ebola virus

in Africa (Pigott et al. 2014); (2) the modeling of the dis-

tribution of NHP hosts and malaria mosquito vectors to-

gether with coverage and forest use data in Southeast Asia,

delimiting areas of risk in the absence of information from

human cases (Moyes et al. 2016); (3) modeling the vector

of Chagas disease as an indicator of risk areas for the dis-

ease in Brazil and Mexico (Peterson et al. 2002; Gurgel-

Gonçalves et al. 2012); and (4) the role of bats in the dis-

semination of rabies virus in Chile (Escobar et al. 2013).

Regarding vector-borne viruses, the distribution of out-

breaks of Oropouche, Saint Louis, Mayaro, and Rocio in

humans has been modeled in Brazil (Lorenz et al. 2017),

and the distribution of NHP was modeled in Colombia to

assess its coincidence with the distribution of human cases

of YF (Piedrahita-Cortés and Soler-Tovar 2016). Additional

models of yellow fever risk at national (Brazil) or interna-

tional levels have been recently published (Kraemer et al.

2015; Kaul et al. 2018; Shearer et al. 2018).

The last 10 years in Brazil have been marked by the re-

emergence of YF with significant numbers of human cases

and NHP deaths. Between 2007 and 2009, 50 human cases

with 20 deaths and 207 confirmed NHP deaths were re-

ported (Cardoso et al. 2010; Moreno et al. 2011; Almeida

et al. 2012, 2014; Moreno et al. 2013; Romano et al. 2014).

The most affected region, the state of Rio Grande do Sul

(RS) in the extreme south of Brazil, has detected an epi-

zootic of unprecedented magnitude (Bicca-Marques and

Freitas 2010; Cardoso et al. 2010; Almeida et al. 2012, 2014)

through its official public health surveillance system. More

than 2000 Alouatta caraya and A. guariba clamitans (204

confirmed as being of YF) died in 9 months during a dis-

ease circulation that also affected the state of São Paulo

(Moreno et al. 2011, 2013) and northeastern Argentina

(Holzmann et al. 2010). However, the largest outbreak of

YF recorded in Brazil has been underway since 2015 in the

West-Central and Southeast regions of the country. As of

October 2018, 2155 human cases had been recorded, with

745 deaths and 2523 epizootics (Bicca-Marques et al. 2017;

Bonaldo et al. 2017; Brasil 2017, 2018a; Fernandes et al.

2017), reaching areas without circulation of the virus for

several decades and a progression that defies understanding

based on current knowledge (Possas et al. 2018; Rezende

et al. 2018).

In this study, we used our database of NHP, vector,

and YF occurrence points during the 2008 and 2009 epi-

zootics in RS and data on climatic, topographic, and veg-

etation variables to model the potential geographic

distribution of Alouatta spp., the vector Haemagogus leu-

cocelaenus, and YF in the extreme south of its occurrence in

the Americas. Our objective was to identify the risk areas

for the disease and the variables of the biotic and abiotic

environments that best explain the occurrence of the virus

in the study region.

METHODS

We estimated the YF virus distribution as a function of

abiotic and biotic environmental variables to identify areas

of disease risk (i.e., environmentally appropriate areas for

its occurrence) within the polygon of the state of Rio

Grande do Sul (RS). We limited our analysis to RS for two

reasons. First, our dataset is composed of records of epi-

zootics made by the personnel of the municipal health
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secretariats that were sent to the State’s Center for Health

Surveillance and data collected via passive surveillance by

the authors who work at the State’s Center. Second, there is

no comparative data from the same period from nearest

Brazilian state (Santa Catarina in the north) because there

were no records of the disease there by both public health

and environmental protection authorities.

We generated models with the use of the maximum

entropy algorithm—Maxent 3.4.0 (Phillips et al. 2006;

Phillips and Dudı́k 2008). Maxent requires (1) presence

data of a species to represent its occurrence pattern in

geographic space and to identify environmental variables

that are potentially predictive of occurrence and (2) ran-

dom background points that are not assumed to be ‘‘ab-

sences’’ and that also do not represent pseudo-absences.

These background points represent the available environ-

mental conditions within the species’ extent of occurrence

that are used together with the conditions available at the

presence locations to assess the response curve of each

variable. Maxent’s robustness and usefulness have grown

since the explanation of their algorithm, model settings and

how (and why) to choose proper model settings (Merow

et al. 2013; Phillips et al. 2017).

We began by modeling the distribution of host mon-

keys (Alouatta caraya and A. guariba clamitans) and the

mosquito vector of the disease in RS (Haemagogus leuco-

celaenus). Subsequently, we used the projections generated

in these models as predictors of the occurrence of YF in

2008/2009. Although hosts and vectors occur beyond RS

boundaries and the YF outbreak has also been recorded in

other regions (not in the neighboring Brazilian state of

Santa Catarina to the north), we limit our analysis to RS

because we do not have accurate information on outbreak

locations outside RS’s borders, thereby ensuring greater

quality and accuracy of the models.

Distribution of Host Monkeys

The occurrence points of A. caraya and A. guariba clami-

tans were obtained from the literature, from our database

of NHP death points reported by the Municipal Health

Secretariats of RS between October 2008 and June 2009,

and from sites where the staff of the State Health Surveil-

lance Center of the RS Health Department captured NHP

between 2004 and 2009 during active YF surveillance (Al-

meida et al. 2012, 2014) (Supplementary material/Table A).

We merged the occurrence data of both taxa because they

are ecologically equivalent (Agostini et al. 2010) and be-

cause there is no empirical basis to suspect that they show

different susceptibilities to the YF virus. We randomly re-

moved duplicate records within a radius of 10 km to avoid

bias arising from spatial clusters (Boria et al. 2014; Renner

et al. 2015). Thus, we used 307 records of occurrence from

the original database of 971 records in the construction of

the models.

We chose 40 environmental variables (31 climatic, 5

vegetational, and 4 topographic) available in WorldClim

version 2 (Fick and Hijmans 2017), spatially explicit in the

form of raster layers with a spatial resolution of approxi-

mately 1 km, as potential predictors of species distribution

(Supplementary material/Table B). Monthly estimates of

solar radiation, water vapor pressure, and wind speed were

also taken from WorldClim version 2. For each variable, we

calculated the annual maximum, minimum, mean, and the

variation (seasonality) at each pixel to represent the pre-

dictable variable. We removed highly correlated variables of

the occurrence locations (VIF > 10 and r > |0.7|) to

avoid overfitting of the models, leaving nine potentially

predictive variables: (1) elevation, (2) percentage of forest

cover, (3) percentage of deciduous forest, (4) mean rainfall

in the coldest quarter, (5) mean rainfall in the warmest

quarter, (6) minimum temperature in the coldest month,

(7) maximum solar radiation, (8) minimum solar radia-

tion, and (9) seasonality in water vapor pressure (air

humidity).

We generated 15,000 random points representing

background records to implement the model. We validated

the model with a cross-validation technique by dividing the

occurrences of NHP into 10 groups. We used 10% of the

records for training the model and the remaining 90% for

testing it. We used the ENMevaluate function of the

ENMeval R (Muscarella et al. 2014) package to evaluate

and select the best model parameterization (Supplementary

material/Text 1).

Distribution of the Mosquito Vector

The modeling of the distribution of Haemagogus leucoce-

laenus was based on field collections by different methods,

mainly using entomologic hand nets (Supplementary

material/Table C). We used 33 records of occurrence from

the original database of 61 records in the construction of

the models after removing duplicated ones.

We removed highly correlated variables as described

previously, leaving 11 variables potentially predictive of the

patterns of mosquito distribution (Supplementary mate-

M. A. B. Almeida et al.



rial/Table B): (1) elevation, (2) vertical distance to the

nearest drainage, (3) topographic humidity index, (4) net

primary productivity (NPP), (5) mean temperature in the

wettest quarter, (6) mean temperature in the driest quarter,

(7) rainfall seasonality, (8) mean rainfall in the wettest

quarter, (9) seasonality in water vapor pressure (air

humidity), (10) minimum wind speed, and (11) aridity

index.

We also used 15,000 random background records and

the cross-validation procedure to validate the vector model.

We split mosquito occurrences into three groups (* 33%

for training and * 67% for testing) to validate the model.

We also selected the best model parameterization using the

ENMevaluate function (Supplementary material/Text 2).

Distribution of YF Virus

We modeled the YF distribution based on the points with

NHP deaths confirmed of YF between October 2008 and

June 2009 (Cardoso et al. 2010; Almeida et al. 2012, 2014).

Given that the records can be biased because of their spatial

clustering in surveyed areas, we removed duplicate records

within a 5-km radius and included the distance to roads as

a bias control layer, indicating suitability for disease inde-

pendent of such proximity. We used 91 out of the 173 YF

records in the modeling (Supplementary material/Table D).

In contrast to the modeling of hosts and vectors, we

used data from the climatic variables only for the months of

the epizootic (October–June). We used the mean, mini-

mum, maximum, and coefficient of variation of the vari-

ables temperature, rainfall, solar radiation, water vapor

pressure, and wind speed during the following periods: 1

(October–December 2008), 2 (October 2008–March 2009),

and 3 (October 2008–June 2009). We divided the modeling

into these three cumulative periods to test the predictive

power of the modeling of each period relative to the actual

points of occurrence of the subsequent period(s), that is, to

determine whether the model generated with data from

period 1 would predict the area of occurrence for periods 2

and 3, and whether the model of the period 2 would predict

the area of occurrence for period 3. In addition to the

climatic, topographical, and vegetation variables, we also

included the modeled distributions of hosts and vectors to

form the set of variables potentially predictive of YF dis-

tribution. The removal of the highly correlated variables

yielded a set of 11 variables: (1) distribution of hosts, (2)

distribution of the vector, (3) leaf area index, (4) percent-

age of forest cover, (5) terrain slope, (6) minimum tem-

perature in the coldest month, (7) maximum temperature

in the warmest month, (8) annual mean rainfall, (9) rainfall

seasonality, (10) seasonality of water vapor pressure (air

humidity), (11) maximum solar radiation, (12) maximum

wind speed, and (13) seasonality of wind speed. We

modeled the distribution of the disease during periods 1, 2,

and 3 by dividing the occurrences of YF between them. We

used 15,000 background records for all YF models. We

cross-validated each period’s model by dividing its occur-

rences into three subsets (one for training and two for

testing). We also tested whether there was a difference

between the randomized cross-validation for the third

period (i.e., with all YF records) and the indexing of the

subsets of data according to the three periods. We also

evaluated the effect of the inclusion of biotic variables

(hosts and vectors) among the predictors using an AIC

selection procedure to choose the best set of predictors. We

also evaluated model parameterization using the ENMe-

valate function. We prioritized simpler response curves

(linear and quadratic) for this model to facilitate the bio-

logical interpretation of the effects of the predictor vari-

ables (Supplementary material/Text 3).

We chose a threshold of habitat suitability above which

we considered that the virus is present to evaluate model

accuracy. We accomplished this task by finding the

threshold of the receiver operating characteristic (ROC)

curve that has maximum sensitivity and specificity. Sensi-

tivity is the proportion of observed presences that are

predicted as such. Therefore, sensitivity measures errors of

omission or false negatives, i.e., when the model predicts

the absence of the species where it is present or predicts

inadequate habitats in an appropriate area (Allouche et al.

2006; Franklin 2009; Merow et al. 2013). The specificity of

the model is the proportion of observed absences that are

predicted as such. Therefore, specificity evaluates com-

mission errors or false positives, i.e., when the model pre-

dicts presence where the species is absent (Franklin 2009;

Merow et al. 2013). We then evaluated the model’s accu-

racy with the true skill statistic (TSS), an effective and well-

accepted measure of accuracy for binary predictions (Al-

louche et al. 2006). TSS is obtained from sensitivity and

specificity (TSS = Sensitivity + Specificity - 1). It ranges

from - 1 to + 1. Values close to + 1 indicate accurate

predictions, whereas values equal to or lower than zero are

not better than random predictions. We used the R 3.3.3

software (R Development Core Team 2016) for data pro-

cessing and modeling.

Modeling Yellow Fever Occurrence in Natural Cycle



We also compared the environmental conditions

found at all NHP locations and those environmental con-

ditions found at the infected NHP’s locations, i.e., the

environmental difference between the niches of NHP and

the virus. We used the occurrences of infected NHP ob-

tained during the YF surveillance and those of putatively

noninfected NHP from our database to accomplish this

task. We then obtained the values of the 11 environmental

predictors at the locations of NHP occurrences, scaled all of

them to mean zero and one standard deviation, and or-

dered all occurrences of infected and noninfected NHP in a

multidimensional environmental space using a principal

component analysis (PCA). The first two PCA axes pro-

vided a high-quality measure of the environmental space.

They explained 68% of the accumulated variation of

environmental predictors. We used this bi-dimensional

space to calculate the observed environmental space occu-

pied by all NHP, by infected NHP, and the difference be-

tween them. We performed PCA ordination for

environmental dissimilarity analysis with the ‘‘prcomp’’

function from the ‘‘vegan’’ R package. Finally, we ran-

domized the ‘‘infections’’ across all NHP 99,999 times to

test whether the observed environmental difference was

larger than expected by the null distribution.

Data Availability

Our datasets are available from the corresponding author

on reasonable request.

RESULTS

The environmental suitability for host NHP is higher in the

northwestern, central, and northeastern portions of Rio

Grande do Sul State (Fig. 1). Four variables contributed

71% of the model gain in all interactions: higher minimum

temperature in the coldest month (20%), lower minimum

solar radiation (18%), high percentage of forest cover

(17%), and low mean rainfall in the warmest quarter

(16%).

The areas with the highest probability of occurrence of

the mosquito vector are located in the northern half of RS,

especially in the northwestern and eastern limits (Fig. 2).

Three variables contributed with a gain of 78% to the

model in all interactions: lower seasonality in water vapor

pressure (most stable air humidity) (46%), higher mean

rainfall in the wettest quarter (22%), and higher mean

temperature in the driest quarter (10%).

The epizootic of YF in the populations of Alouatta spp.

started in the northwest and advanced to the central and

northeastern regions of RS (Fig. 3a). The distribution of

the hosts (28% contribution in the model) and the vector

(24%) and the variation in wind speed (16%) directly

influenced the distribution of the disease in period 1

(October 2008–December 2009). The suitability map gen-

erated with the occurrence points in this period indicated a

region in northeastern RS, approximately 600 km from the

first occurrence points, which would register YF in period 2

(Fig. 3). The distribution of the hosts (32%) and the sea-

sonality in the water vapor pressure (20%) positively

influenced the distribution of YF in period 2 (October

2008–March 2009), whereas the variation in wind speed

(15%) had a negative effect. The model of period 2 also

indicated areas of greater suitability, especially in the

northeastern and eastern-central regions, which would

register the disease only in the following period (Fig. 3b).

Finally, considering all records of the disease in period 3

(October 2008–June 2009, Fig. 3c), the most important

variables in the model were seasonality in water vapor

pressure (annual variation in air humidity) (36%), distri-

bution of hosts (32%), and maximum wind speed (11%).

The annual mean rainfall (7%) and the maximum tem-

perature in the warmest month (5%) were important at a

lesser extent. All three models had a high accuracy

according to TSS metrics: period 1 (0.80 ± 0.01), 2

(0.56 ± 0.01), and 3 (0.55 ± 0.01).

The model including environmental layers and the

distribution of hosts among the predictor variables was the

best model (Table 1). On the other hand, no difference

existed in the performance of the validated models with

randomized or cross-validation indexed by the epizootic

months (randomized and indexed validation, AIC =

2817.50) (Supplementary material/Text 3 and Figure N).

In addition, we found that the inclusion of the distance to

the nearest road as a disease predictor, instead of as a

sampling bias control layer, generated a model with better

fit and performance (bias control, AIC = 2817.50; predic-

tive variable, AIC = 2804.28) (Supplementary material/

Text 3 and Figure O). Finally, we found that the observed

environmental difference between the niche of NHP and

the niche of the virus was much larger than the difference

expected by chance, i.e., there are specific environmental

conditions within the NHP’s range which are appropriate

for virus occurrence (Fig. 4).
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DISCUSSION

In this study, we modeled the distribution of YF using a

maximum entropy algorithm based on a large database of

accurately recorded geographic coordinates of sites with

confirmed YF circulation in NHP to create models of the

occurrence of YF and to identify areas of risk in the

southern limit of the distribution of the disease in the

Americas, where it is not considered endemic. We based the

modeling on the potential distribution of host NHP and

the mosquito vector as well on abiotic and other biotic

environmental variables. The models of the initial periods

of the epizootics adequately predicted areas where the YF

would occur in the next quarter or semester. The complete

model (the entire epizootic period) identified variations in

air humidity, the occurrence of Alouatta spp., and the

maximum wind speed as the most important variables for

the distribution of the virus in the landscape. Mean rainfall

and maximum temperature were of secondary importance

in this prediction.

The participation of the host in the occurrence of YF in

the models of the three periods was expected, in part be-

cause we used data on the occurrence of YF from con-

firmed epizootics in NHP. The distribution of Alouatta spp.

and the variation in humidity accounted for 2/3 of the

distribution pattern of jungle YF at the southern limit of its

distribution in the Americas.

Abiotic variables related to air humidity, rainfall, and

temperature have a strong influence on the reproduction of

vectors given their need of natural breeding sites with

accumulated water. Therefore, reproduction is favored in

environments with higher and more stable humidity,

maintained by higher rainfall indexes and higher temper-

atures (Consoli and Lourenço-de-Oliveira 1994; Reiter

2001; Dégallier et al. 2006). Consequently, these conditions

promote an increase in the density of vectors (Dégallier

et al. 2006), whose dispersal may be influenced by wind

speed and direction (Causey et al. 1950; Moreno and Barata

2012), and facilitate an increase in virus density and dis-

persal that modulate the transmission dynamics of the

Figure 1. Predicted distribution for Alouatta spp. in Rio Grande do Sul State, Brazil. Maps and drawings created specifically for this study.

(Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com)
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disease. The relationship between rainfall and the occur-

rence of epizootics and outbreaks of YF had been suggested

(Dégallier et al. 1992; Vasconcelos et al. 2001a, 2001b;

Alencar et al. 2010; Cardoso et al. 2010; Gomes et al. 2010;

Vasconcelos 2010; Souza et al. 2011; Lira-Vieira et al. 2013).

Peaks of abundance of the vector Hg. leucocelaenus

coincide with the rainiest months (October–March) in RS

(Gomes et al. 2010). The beginning of the epizootic of 2008

and 2009, for which we generated the models, occurred

exactly in the rainiest month (October). Changes in rainfall

were recorded during this month in two meteorological

stations near the areas with the highest number of YF re-

cords during period 1. Rainfall was three times higher than

the 30-year mean after 10 months below or near this his-

torical mean in one area (Supplementary material/Fig-

ure P) and twice the mean after 5 months below the mean

in another area (Supplementary material/Figure Q). Such

an increase in rainfall might have triggered an explosive

increase in mosquito populations resulting from months of

drought and egg accumulation. Haemagogus janthinomys

eggs, for example, resist desiccation for up to one year

(Hervé et al. 1986) and start to hatch when rains resume.

Maximum egg hatching in this genus occurs after many

submersions in rainwater (Alencar et al. 2008; Marcondes

and Alencar 2010). Consequently, periodic immersion-

desiccation cycles generate adults throughout the year,

whenever the meteorological conditions are favorable for

egg hatching (Alencar et al. 2014). The association between

a severe and prolonged rainy season and a high abundance

of vectors was proposed to explain an increase in the cir-

culation of YF in Nigeria in 1987 and in Brazil in 2000

(Vasconcelos et al. 2001a), where in addition to higher

rainfall, the beginning of the year was characterized by a

higher mean temperature. The mean temperature of that

period was 2�C warmer than the mean of the previous

20 years, while the rainfall in January and February was

25% higher.

The mean temperature in the driest quarter influenced

the distribution of the vector. The higher mean winter

temperatures probably favored the maintenance of adult

Figure 2. Predicted distribution for Haemagogus leucocelaenus in Rio Grande do Sul State, Brazil. Maps and drawings created specifically for

this study. (Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com)
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mosquitoes laying eggs before the onset of rains. The

temperature also plays a role in virus development, which is

faster under higher temperatures, resulting in the acceler-

ation of the onset of the infective stage of the vectors

(Shope 1991). Both the maximum temperature and its

duration have an important role in the extrinsic incubation

period of the virus, that is, its incubation in the mosquito

vector (Whitman 1951). The virus showed the shortest

incubation period in Haemagogus mosquitoes under labo-

ratory conditions when the ambient temperature was kept

constant at 30�C (Whitman 1951). Interestingly, tempera-

tures reaching above 30�C were recorded in ca. 50% of the

days during the period of yellow fever transmission (Oc-

tober 2008–June 2009) at two meteorological stations near

the areas with the highest numbers of YF records during the

first quarter of the outbreak (Brasil 2018b).

The contribution of wind to the dispersal of vectors

(and their viruses) can be significant, particularly in frag-

mented landscapes characterized by isolated habitat patches

surrounded by a matrix of pastures and fields, where

Figure 3. Map of habitat suitability for the occurrence of yellow fever in Rio Grande do Sul State, Brazil, from three cumulative sets of disease

occurrence records in nonhuman primates: a October–December 2008, b October 2008–March 2009, and c October 2008–June 2009. Maps and

drawings created specifically for this study. (Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com)

Table 1. Ranking of Yellow Fever Models With and Without the Inclusion of Biotic Predictors, According to AIC. In All Four Models,

Yellow Fever is the Response Variable as a Function of Combinations of Environmental Variables (Env), Nonhuman Primates (Host) and

Mosquitoes (Vector) Distribution.

Model #par AICc DAICc AIC weight AUC

YF * Env + host 17 2814.98 0.00 0.98 0.82

YF * Env + host + vector 21 2823.27 8.29 0.02 0.82

YF * Env 16 2879.17 64.19 0.01 0.77

YF * Env + vector 18 2886.93 71.95 0.00 0.75
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mosquitoes can move up to 11.5 km (Causey et al. 1950).

Some of the species with the greatest potential of dispersal,

according to experimental capture/mark/recapture studies

(Lira-Vieira et al. 2013), are proven or likely vectors of YF,

such as Hg. Spegazzini (Causey et al.1950), Hg. leucoce-

laenus (Vasconcelos et al. 2003; Cardoso et al. 2010), Ae.

serratus (Cardoso et al. 2010), Ae. terrens (Berti et al. 2015),

and Psorophora ferox (Moreno et al. 2011). Therefore, the

predominant direction of the winds in a region is a variable

with great potential for the definition of priority areas for

vaccination (Moreno and Barata 2012). The difference in

the predictive power of the wind between the vector dis-

tribution models (minor importance) and the YF virus

(major importance) probably results from differences in

residence time of the respective taxa in the study region.

The model of the vector identified that variations in other

abiotic variables are more critical in determining the dis-

tribution of YF and, consequently, in locating its potential

or long-term habitat areas. On the other hand, the YF

model highlighted that the wind was an important pre-

dictor of the occurrence of the virus during its relatively

short stay, although lethal to the NHP, in the RS forested

areas. The progression of epizootics in the west–east

direction is compatible with the prevailing direction of the

wind currents in the state (Rio Grande do Sul 2014) and

their possible role in the dispersal of vectors (Causey et al.

1950; Taylor 1951).

The inclusion of the distance to the nearest road as a

potential predictor improved the performance of the model

and allowed detecting that the highest probabilities of

occurrence of YF were concentrated in the vicinity of roads.

Most likely, this result reflects a bias in the collection of

biological samples from dead NHP by professionals from

Municipal Health Secretariats because of accessibility dif-

ferences among affected areas (Taylor 1951; Oliveira et al.

2016). However, we cannot reject the possibility that roads

play a role in the dispersal of infected vectors either via

transport in vehicles or the influence of wind ‘‘tunnels.’’

Biodiversity sampling bias in the vicinity of rivers and

roads has been demonstrated (Oliveira et al. 2016) and

cannot be neglected in SDM studies (Warton et al. 2013).

Consequently, we used a layer to control this bias, which

did not restrict the environmental suitability of the disease

to the vicinity of roads.

As expected, the inclusion of the distribution of hosts

and vector as predictors also improved the performance of

the model, especially the inclusion of host, which was

ranked as the best model. Modeling without these biotic

variables predicted a much broader suitable area for the

virus. This high commission error rate (overprediction) for

jungle YF has important implications for the identification

of risk areas for the occurrence of urban YF. According to

the niche concept proposed by Soberón (2007), the dis-

tribution of a species (i.e., its area of occurrence) is limited

Figure 4. Observed and expected environmental difference between the niche of nonhuman primates and the yellow fever virus. a Bi-

dimensional space of environmental conditions used by nonhuman primates (i.e., environmental niche of nonhuman primates) represented by

the first two axes of a principal component analysis (PCA). The dotted line represents the environmental volume occupied by all nonhuman

primates. Points correspond to infected nonhuman primates and the internal polygon (in orange in the online version) represents the volume of

the environmental space occupied by infected nonhuman primates. The unfilled area within the dotted line represents the observed

environmental difference between the niche of nonhuman primates and virus. b Histogram of expected environmental difference between the

niche of nonhuman primates and virus according to the null distribution. Gray dotted lines represent the 95% confidence interval for the

estimated expected difference.
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by abiotic and biotic factors and by the species’ capacity of

dispersal and colonization of suitable environments. Al-

though not exclusively dependent on this variable, high

infestation rates with the urban vector Ae. aegypti within

this ‘‘enlarged’’ area detected by the model can indicate

regions with greater possibility of YF reurbanization due to

a higher proximity to possible foci of wild circulation.

The distribution of hosts stood out as the main pre-

dictor of YF distribution, containing most useful infor-

mation by itself and most information that is not present in

the environmental predictors. We found that the observed

environmental difference between the niche of NHP and

that of the virus is greater than that expected by the null

distribution. This finding shows that there is a strong

environmental bias between NHP and infected monkeys

and suggests that the virus has an environmental niche that

is restricted with respect to that of NHP. The environ-

mental niche of NHP, represented by the PCA ordination,

was not driven by a few dominant variables, but by dif-

ferent variables that were highly correlated with the two

first axes (Supplementary material/Text 3–Table K). It

shows that all environmental variables are complementary

to each other to determine the environmental niche of

NHP and that these environmental predictors may act to-

gether for producing this environmental bias between NHP

and YF virus.

In summary, our approach covered the three uses of

spatial modeling in animal and public health (Stevens and

Pfeiffer 2011). First, we used the geographic coordinates of

sites with occurrence of YF in NHP to describe the affected

areas more precisely than previous modeling based on

human cases located in geopolitical boundaries (Hamrick

et al. 2017; Hamlet et al. 2018; Kaul et al. 2018; Leta et al.

2018; Shearer et al. 2018) or on the intersecting pattern of

occurrence of NHP with human cases (Piedrahita-Cortés

and Soler-Tovar 2016). Second, we identified the abiotic

variables that best explained the distribution of YF during

the epizootic under analysis. Finally, we highlighted the

importance of including host and vector models in pre-

dicting the path traveled by the virus during the epizootic

and identified regions outside the expected range of jungle

YF at risk of reurbanization of the disease.

Despite technological advances that include novel

detection techniques and complex modeling, more than

80 years after the discovery of the jungle cycle of YF (Soper

et al. 1933), our understanding of the driving forces of

disease re-emergence after long periods of silence remains

limited (Hill 2012). Although the climatic factors fre-

quently indicated as drivers of disease spread still need to

be better assessed, we confirmed the important role of

rainfall. Likewise, the presence of NHP was important for

the occurrence of the disease. However, we need further

field studies to elucidate the role of vectors and human and

nonhuman hosts on disease occurrence and dispersal in

fragmented environments. The support for the influence of

the wind as a dispersal agent of the virus, although previ-

ously suggested, reinforces its potential as a predictor of

disease spatial progression.
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Consales CA, Fonseca DF (2010) Ecologia de Haemagogus e
Sabethes (Diptera: Culicidae) em áreas epizoóticas do vı́rus da
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